2019 Engineering Science

National 5

Finalised Marking Instructions

© Scottish Qualifications Authority 2019
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for National 5 Engineering Science

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) Where a candidate makes an error at an early stage in a multi-stage calculation, credit should normally be given for correct follow-on working in subsequent stages, unless the error significantly reduces the complexity of the remaining stages. The same principle should be applied in questions which require several stages of nonmathematical reasoning.
(c) All units of measurement will be presented in a consistent way, using negative indices where required (eg ms-1). Candidates may respond using this format, or solidus format (m / s) or words (metres per second), or any combination of these (eg metres/second).

Marking instructions for each question

Section 1

Question		Expected response		Max mark	Additional guidance

Question			Expected response	Max mark	Additional guidance
4.	(a)		$\begin{aligned} & \text { Velocity Ratio }=\frac{\text { Speed of Input }}{\text { Speed of Output }} \\ & \text { Velocity Ratio }=\frac{800}{320} \\ & \text { Velocity Ratio }=5: 2 \end{aligned}$	2	1 mark for substitution. 1 mark for correct answer from given working. Accept $2 \cdot 5: 1$ or $2 \cdot 5$ Ignore any units.
	(b)		Anti-clockwise.	1	Do not accept other way or opposite way. Accept indication of direction on diagram.
5.	(a)	(i)	Civil.	1	
		(ii)	Environmental.	1	
	(b)		Less stressful journeys . Journey time quicker. City roads less congested. Areas bypassed will be quieter/safer. City will be less polluted to live in. Jobs created in the construction of the bypass/of housing in outlying areas.	2	1 mark for each descriptive response of positive social impact of a city bypass. Assume impact refers to bypass unless indicated in response. Do not accept quick on its own. Do not accept less congestion on bypass.
6.				3	1 mark for NOT gate wired to input B. 1 mark for OR gate wired to A and (NOT) B. 1 mark for AND gate wired to input C and $A(O R) B$. No FTE from gate.

Question		Expected response	Max mark	Additional guidance
7.	Positive: It does not produce CO_{2} when in use. Reduces the need to burn fossil fuels. Does not contribute towards global warming. No pollution/clean when in use.	1 mark for a description of an appropriate positive environmental impact when in use.		
Negative: Wildlife disrupted/habitats destroyed. Flow of water/flooding may erode the land/river bank. Unattractive pylons/dam site spoiling natural landscape. Vehicles noise when accessing the dam site.	1 mark for a description of an appropriate negative environmental impact when in use. Do not accept renewable/does not use fossil fuel on its own. Do not accept the same environmental impact of use as both positive and negative impact.			

Section 2

Question			Expected response	Max mark	Additional guidance
8.	(a)		$\begin{aligned} & 1200+270=1470(\Omega) \\ & R T=\frac{R 1 \times R 2}{R 1+R 2} \\ & R T=\frac{1470 \times 390}{1470+390} \\ & R T=308 \cdot 2 \\ & R T=310 \Omega(2 \mathrm{sf}) \end{aligned}$	3	1 mark for series resistance (unit not required). 1 mark for substitution Allow for FTE. 1 mark for answer with unit from given working.
	(b)	(i)	$\begin{aligned} & V=I R \\ & V=0.031 \times 390 \\ & V=12.09 \\ & V=12 \mathrm{~V}(2 \mathrm{sf}) \end{aligned}$	2	1 mark for substitution. 1 mark for answer with unit from given working with unit.
		(ii)	$\begin{aligned} & V=I R \\ & 12=I \times 1470 \\ & I=\frac{12}{1470} \\ & I=0.00816 \\ & I=8.2 \mathrm{~mA}(2 \mathrm{sf}) \end{aligned}$	3	1 mark for substitution. Allow for FTE from (b)(i). 1 mark for transposition. 1 mark for correct answer from given working with unit.
		(iii)	$\begin{aligned} & A_{3}=0.0082+0.031 \\ & A_{3}=0.0392 \\ & A_{3}=39 \mathrm{~mA}(2 \mathrm{sf}) \end{aligned}$ OR $\begin{aligned} & V=I R \\ & 12=I \times 310 \\ & I=\frac{12}{310} \\ & A_{3}=0.0387 \\ & A_{3}=39 \mathrm{~mA}(2 \mathrm{sf}) \end{aligned}$	1	1 mark for answer with unit. Allow for FTE from (b)(ii). Allow for FTE from (a) and (b)(i).

Question		Expected response	$\begin{array}{c}\text { Max } \\ \text { mark }\end{array}$	Additional guidance
(c)	$\begin{array}{l}\text { Graphene. } \\ \text { Conducts electricity quickly. } \\ \text { This would result in batteries } \\ \text { charging quicker/circuits working } \\ \text { quicker. }\end{array}$	$\mathbf{2}$	$\begin{array}{l}\text { Accept impact for any emerging } \\ \text { technology. }\end{array}$	
1 mark for cause.				
1 mark for effect.				
Self driving car.				
Impact of emerging system is it may				
not be fully tested and so may have				
faults and this could cause an				
accident.				

developing; 1 mark maximum for

cause and effect.\end{array}\right\}\)

Question		Expected response	Max mark	Additional guidance
10.	(a)	Saw blade: rotary. Pneumatic piston: reciprocating.	2	1 mark for saw blade motion. 1 mark for piston motion. Accept rotational/reciprocal. Do not accept rotating.
	(b)	When an increase in pressure is detected by valve 3... ...and when valve 1 is actuated (air is sent actuating valve 4), causing the piston to instroke... valve 7 is actuated then there is a time delay... ...then valve 4 actuates causing the piston to outstroke.	3	1 mark for AND control with valve 1 and 3 causing the piston to instroke. 1 mark for time delay after valve 7 being actuated. 1 mark piston outstroke after valve 4 actuated and valve 7/time delay.
	(c)		1	X on lower pipe to double acting cylinder. Accept X on the bottom exhaust port of the $5 / 2$ valve.
	(d)	The control of the piston movement could be easily changed/updated. The piston time delay could be easily changed/shortened. The piston time delay could be more consistent/accurate.	1	Descriptive response relating to advantage of microcontroller control of piston movement. Do not accept fewer components or cost savings.

Question			Expected response	Max mark	Additional guidance
10.	(e)	(i)	Apiston $=\frac{\pi \mathrm{d}^{2}}{4}$ Apiston $=\frac{3.14 \times 88^{2}}{4}=6079\left(\mathrm{~mm}^{2}\right)$ $\operatorname{Arod}=\frac{\pi \mathrm{d}^{2}}{4}$ Arod $=\frac{3 \cdot 14 \times 24^{2}}{4}=452 \cdot 2\left(\mathrm{~mm}^{2}\right)$ $A_{\text {effective }}=A_{\text {piston }}-A_{\text {rod }}$ Aeffective $=6079-452 \cdot 2$ $A_{\text {effective }}=5627$ $A_{\text {effective }}=5600 \mathrm{~mm}^{2}$ (2 sf)	3	1 mark for area of rod (unit not required). 1 mark for area of piston (unit not required). 1 mark for correct subtraction answer with unit. Using the π function will give different intermediary values (6082 and $452 \cdot 4$) but same final answer to 2 sf .
		(ii)	$\begin{aligned} & P=\frac{F}{A} \\ & 0 \cdot 20=\frac{F}{5600} \\ & F=0.20 \times 5600 \\ & F=1120 \\ & F=1.1 \mathrm{kN}(2 \mathrm{sf}) \end{aligned}$	3	1 mark for substitution Allow FTE from part (e)(i). 1 mark for transposition. 1 mark for correct answer from given working with unit.

Question			Expected response	Max mark	Additional guidance
11.	(a)	(i)	$\begin{aligned} & \Sigma C W M=\Sigma A C W M \\ & \left(R_{A} \times 2.4\right)=(680 \times 0.4)+(930 \times 3.6) \\ & R_{A}=\frac{3620}{2 \cdot 4} \\ & R_{A}=1508 \\ & R_{A}=1.5 \mathrm{kN}(2 \mathrm{sf}) \end{aligned}$	3	1 mark for substitution. 1 mark for transposition. 1 mark for correct answer from given working with unit.
		(ii)	$\begin{aligned} & \sum F_{\text {vertical }}=0 \\ & 930+680=1500+R_{B} \\ & R_{B}=1610-1500 \\ & R_{B}=110 \\ & R_{B}=110 \mathrm{~N}(2 \mathrm{sf}) \end{aligned}$	2	1 mark for substitution Allow FTE from part a(i). 1 mark for correct answer from given working with unit. If moments used to determine R_{B} then accepted $101 \cdot 7 \mathrm{~N}$.
	(b)		Equilibrium.	1	Ignore additional description
	(c)		$\begin{aligned} & \sigma=\frac{F}{A} \\ & 0 \cdot 06=\frac{2500}{A} \\ & A=\frac{2500}{0 \cdot 06} \\ & A=41670 \\ & A=42000 \mathrm{~mm}^{2}(2 \mathrm{sf}) \end{aligned}$	3	1 mark for substitution.. 1 mark for transposition. 1 mark for correct answer from given working with unit.
	(d)		Design how to connect the visitor centre to the national grid. Calculate the electrical power requirements of the visitor centre. Select appropriately rated cables. Calculate the lighting requirements/ plan the lighting layout.	2	1 mark for any appropriate descriptive response of an engineer's task (design/calculate/select/model...) and the electrical aspect (must be linked to design of visitor centre). Not design a circuit/wiring on its own. Not electronic or electrician related.

Question			Expected response	Max mark	Additional guidance
12.	(a)	(i)	$\begin{aligned} & \text { time }=60+20=80(\mathrm{~s}) \\ & \mathrm{E}_{\mathrm{e}}=\mathrm{V} \mathrm{I} \mathrm{t} \\ & \mathrm{E}_{\mathrm{e}}=230 \times 12 \times 80 \\ & \mathrm{E}_{\mathrm{e}}=220800 \\ & \mathrm{E}_{\mathrm{e}}=220 \mathrm{~kJ}(2 \mathrm{sf}) \end{aligned}$	3	1 mark for determining time in seconds. Unit not required. 1 mark for substitution. Allow FTE for time. 1 mark for correct answer from given working with unit. Accept calculating energy from power x time.
		(ii)	$\begin{aligned} & \eta=\frac{\text { Eout }}{\text { Ein }} \\ & 0.64=\frac{\text { Eout }}{220000} \\ & \text { Eout }=0.64 \times 220000 \\ & \text { Eout }=140800 \\ & \text { Eout }=140 \mathrm{~kJ}(2 \mathrm{sf}) \end{aligned}$	3	1 mark for substitution Allow for FTE from part a(i). 1 mark for transposition.. 1 mark for correct answer from given working with unit
	(b)		Lubricate winch axles to reduce friction. Use a V belt so that there is less slippage/energy lost.	2	Explanation must relate to motorised winch modifications. 1 mark for cause that increases the efficiency of the winch. Accept use of lubrication/bearings/ toothed belt/V belt chain. 1 mark for effect on friction/energy losses from given cause.
	(c)		600 (N)	1	Unit not required
	(d)		$\begin{aligned} & \varepsilon=\frac{\Delta l}{l} \\ & 0.0030=\frac{\Delta l}{2700} \\ & \Delta l=0.003 \times 2700 \\ & \Delta l=8.1 \\ & \Delta l=8.1 \mathrm{~mm}(2 \mathrm{sf}) \end{aligned}$	3	1 mark for substitution. 1 mark for transposition. 1 mark for correct answer from given working with unit.

| Question | | Expected response | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13. | (a) | All lamps will have maximum
 brightness/230 volts.
 If one lamp fails the rest will remain
 on. | $\mathbf{2}$ | Descriptive response.
 1 mark for each advantage.
 Do not accept all lamps will be the
 same brightness/voltage on its own. |
| (b) | | 2 | 1 mark for correct symbol (accept if
 line in centre of triangle is omitted. | |
| (c) | As the light level decreases...
 mark for correct orientation and
 connection. Allow FTE. | | | |
| increases.. | | | | |
| $\ldots .$. voltage (Vin) will increase. | | | | |

Question		Expected response	Max mark	Additional guidance
13.	(e)		4	1 mark for voltage across variable resistor. Ignore unit. 1 mark for substitution (apply FTE and accept $5 \cdot 0 \mathrm{~V}$ if V_{1} is not calculated). 1 mark for transposition. 1 mark for correct answer from given working with unit. 1 mark for calculating current (ignore unit). 1 mark for calculating voltage V_{R} (ignore unit). 1 mark for transposition (allow FTE). given working with unit.
13.	(f)	700 (lux)	1	Unit not required.

Question		Expected response	Max mark	Additional guidance
13.	(g)	Quicker to develop solution. Easier to change circuit during testing. Reduces cost of designing as components will not be destroyed. Safer as 230 V circuit can be tested without fear of electrocution. No risk of damage to any actual components.	2	Descriptive advantage. 1 mark for each relevant statement. Not faster, cheaper, easier or safer on its own. Do not accept testing can be carried out without an advantage. Cost responses must relate to speed or no damaged components.
14.	(a)	The harvester would be expensive to buy/maintain/run. Workers would lose their jobs therefore lose income. Harvester would be able to pick the fruit quicker/more fruit picked in a day meaning more profit. Increase profit for the farmer as wages would be reduced. Only ripe fruit would be picked therefore reducing waste increasing overall tonnage and profit. No need to house so many workers therefore increased profits. Workers would move away causing local shops to lose income.	2	1 mark for each appropriate economic description. Job and speed based responses must include reference to income/profit.

Question		Expected response	Max mark	Additional guidance
14.	(b)	$2200 \times 12=$ Output speed $\times 48$ $\begin{aligned} & \text { Output speed }=\frac{26400}{48} \\ & \text { Output speed }=550\left(\text { revs } \mathrm{min}^{-1}\right) \\ & 550 \times 16=\text { Output speed } \times 24 \end{aligned}$ $\text { Output speed }=\frac{8800}{24}$ Output speed $=366 \cdot 7$ Output speed $=370$ revs $\mathrm{min}^{-1}(2 \mathrm{sf})$ OR $\frac{\text { output speed }}{\text { input speed }}=\frac{A}{B} \times \frac{C}{D}$ $\frac{\text { output speed }}{2200}=\frac{12}{48} \times \frac{16}{24}$ output speed $=\frac{12}{48} \times \frac{16}{24} \times 2200$ Output speed $=\frac{1}{6} \times 2200$ Output speed $=366 \cdot 7$ Output speed $=370$ revs $\min ^{-1}(2 \mathrm{sf})$	4	1 mark for substitution.
				1 mark for correct answer from given working (unit not required).
				1 mark for substitution Allow FTE.
				1 mark for correct answer from given working with unit.
				Do not accept RPM.
				1 mark for first ratio.
				1 mark for second ratio.
				1 mark for transposition (2200/6 if ratios inverted).
				1 mark for answer from working with unit.

